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Abstract

A method for calculating fully anharmonic vibrational state counts, state densities, and

partition functions for molecules is presented. The methodmakes use of a new quantity, the

intrinsic density of states, which is associated with the states that uniquely arise from a given

mode, mode pairing, or higher-order mode coupling. By usingonly low-order intrinsic den-

sities, the fully-coupled anharmonic vibrational result can be constructed, as shown by our

application of the method to methane, CH4, and cyclopropene C3H4. Truncation of the in-

trinsic expansion at the coupling of pairs of modes yields greatly improved scaling over direct

evaluation of the full-dimensional result and recovers a large fraction of the total anharmonic-

ity. We also discuss the relation of the new quantities to thestructure of the potential energy

surface.

Keywords: Density of States, Partition Functions, Anharmonicity, n-Mode Representation,

Separability
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Accurate predictions of kinetics and thermodynamics depend critically on accurate evalua-

tion of the rovibrational density of states,ρ(E), and its related quantities.1–4 In the classic Rice,

Ramsperger, Kassel, and Marcus (RRKM) theory of unimolecular reactions, the rate constant is

proportional to the number of states at the transition statedivided by the density of states of the

reactant. Similarly, in bimolecular canonical transitionstate theory (TST) the rate constant is de-

pendent on the density of states through the appearance of partition functions corresponding to

the reactants and to the transition state.2 Unfortunately these quantities are difficult to evaluate

accurately for several reasons, including: the need for proper quantization, couplings between ro-

tations and vibrations, and anharmonic couplings amongst the vibrations. In this letter we present

a general and efficient scheme for including the important anharmonic coupling.

A common approximation, which makes the computation ofρ(E) quite amenable, is to use a

separable model in which every vibrational degree of freedom is assumed to be totally uncoupled

from any of the others. Most often each mode is further assumed to be harmonic, although some-

times modes are given special treatment as Morse oscillators, hindered rotors, etc... Algorithms and

computer implementations of these methods, e.g., the semiclassical Whitten-Rabinovitch (WR) ap-

proximation,5 the Beyer-Swinehart (BS)6 and Stein-Rabinovitch (SR)7 state counting algorithms,

or the steepest-descent method,4 are readily available. As might be expected, at higher energies

these approximations can significantly underestimate the anharmonicity because of the neglect

of the coupling between vibrational modes. This is true evenwhen the underlying independent

vibrations are treated as anharmonic oscillators.8,9

Many attempts have been made to improve on the separable approximation by looking at the

specific coupling between different modes. For instance, the coupling of bends to stretches has

been studied and empirical models describing this couplinghave been constructed,10–13 the role

of stretch-stretch coupling was been investigated in triatomic systems,12,14 numerous methods

for treating torsional motions have been developed,2,3,15–18and Monte-Carlo integration has been

applied to calculation of quantum vibrational states usinga spectroscopic (e.g., Dunham19) expan-

sion which includes some anharmonic terms.20–23It is also worth noting the recent semi-empirical
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work of Schmatz24 as well as the thermodynamic method, which relies on experimental data,25,26

the density correlation function method of Jeffreyset al,27,28and the use of path-integral methods

to calculate the quantum partition function directly.29,30 The accurate inclusion of the coupling

terms, however, remains an open issue.

Despite its associated problems, separability has certainnice features which we wish to re-

tain. It allows a complex problem, the calculation of the full-dimensional coupled density of

states,ρ(E), to be broken down into a set of small, readily computable quantities that can be

then reassembled to yield the full result. As such it renderslarge, potentially intractable problems

amenable to computation. In this letter we propose a method for the efficient construction of the

anharmonic density of states via an expansion in terms ofintrinsic n-mode densities of states. This

formalism includes the separable approximation at its lowest order and is systematically improv-

able by including the effect of coupled pairs, triples, etc... of modes. Furthermore, we show that,

while accurate results are not obtained with 1-mode intrinsics, accurate results can be obtained via

2-mode intrinsic state densities.

The intrinsicn-mode densities of states correspond to the component of thedensity of states

that cannot be generated by convolutions of lower-mode densities of states and will be denoted,∆.

Theintrinsic two-mode density of states,

∆i j(E) = ρi j(E)−ρi(E)∗ρ j(E), (1)

whereρi j(E) is the exact density of states spanned by modesi and j while ρi(E) andρ j(E) are the

one-mode densities of states associated with each individual mode and the notationa ∗ b denotes

the convolution. Here the one-, two-, and reduced-mode densities are calculated with the remaining

coordinates fixed at some reference. The intrinsic three-mode density of states is, similarly,

∆i jk(E) = ρi jk(E)−ρi(E)∗ρ j(E)∗ρk(E)−∆i j(E)∗ρk(E)−∆ik ∗ρ j −∆ jk(E)∗ρi(E). (2)

Comparisons of the 2- and 3-mode intrinsic state densities with full 2- and 3-mode state densities
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are shown in Fig. 1.
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Figure 1: Selected 2- and 3-mode intrinsic densities of states for the indicated mode combinations
of CH4.

The practical usefulness of the previous equations is that one can make general expressions for

the full dimensional molecular state density through various orders of then-mode intrinsic state

density. At first order the method reduces to the usual separable approximation. At second order,

∆i jk(E) and all higher-order intrinsics are set to 0 and one can writethe following equations for the

pairwise coupled 3- and 4-mode systems:

ρ(2)
i jk (E) = ρi(E)∗ρ j(E)∗ρk(E)+∆i j(E)∗ρk(E)+∆ik(E)∗ρ j +∆ jk(E)∗ρi(E), (3)

ρ(2)
i jkl(E) = ρi(E)∗ρ j(E)∗ρk(E)∗ρl(E)+∆i j(E)∗ρk(E)∗ρl(E)

+∆ik(E)∗ρ j(E)∗ρl(E)+∆ jk(E)∗ρi(E)∗ρl(E)+∆il(E)∗ρ j(E)∗ρk(E)

+∆ jl(E)∗ρi(E)∗ρk(E)+∆kl(E)∗ρi(E)∗ρ j(E)+∆i j(E)∗∆kl(E)

+∆ik(E)∗∆ jl(E)+∆il(E)∗∆ jk(E), (4)

where the superscript(n) indicates the order of the approximation. Generalization to larger molec-

ular systems and/or to higher n-mode approximations is straightforward. While the previous equa-

tions are suitable to continuousρ , i.e., those derived from classical expressions, with slight mod-

ification they can be used for discrete, i.e., quantum,ρ . For discrete states, the pairwise coupled
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3-mode system is

ρ(2)
i jk (E) = ρi(E)∗ρ j(E)∗ρk(E)+

1
3

∆i j(E)∗ρk(E)+
1
3

∆ik(E)∗ρ j +
1
3

∆ jk(E)∗ρi(E), (5)

where the extra factors of13 arise from the requirement thatρ(2)
i jk (E) ≥ 0.

Here, we have applied the 2-mode version of method to the calculation of state counts, densities

of states, and partition functions for methane, CH4, and cyclopropene, C3H4. Classical phase

space integrals for state counts and densities of states were evaluated using our recently published

Monte Carlo algorithm,MCPSI.31 For methane, we also demonstrate the quantized version of the

method where we solve for theρi and∆i j using 1- and 2-dimensional vibrational Hamiltonians and

compare with full-dimensional vibrational configuration interaction (VCI) results. In all cases, the

coordinates employed are mass-weighted Cartesian normal modes and calculations correspond to

the vibrational states with zero angular momentum.

As a test of the 2-mode coupling scheme we have used methane with a tight-binding poten-

tial.32,33 This potential is a good approximation to the trueab initio potential and has the advan-

tage of being exceptionally quick to evaluate. With this potential we can easily achieve millions

of samples for all of the Monte Carlo runs and this tightly converge the results and minimize any

effects of statistical noise. For reference, the vibrational frequencies of CH4 with this potential are

v1 = v2 = v3 = 1573 cm−1, v4 = v5 = 1692 cm−1, v6 = 3157 cm−1, andv7 = v8 = v9 = 3248 cm−1,

where we have reflected degeneracies by repeating frequencies in the list so that the subscripts also

number the 9 normal modes. The accuracy of the pairwise coupled densities of states is shown in

Fig. 2 where it is compared with the separable approximationand with the fully coupled result.

The agreement ofρ(2) with the full-mode coupled density of states is excellent for the classical

densities, whereas the usual separable approximation under-predicts the state density by a factor

of 2 at threshold. For this system,ρ(1) results in negligible improvements over the harmonic case

due to cancellation of positive and negative anharmonicities. The comparison of the integrated

quantum density of states,W , is also shown in Fig. 2. While the pairwise coupled approximation
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yields a general shift of states to lower energies, it is onlya small improvement over the separable

case. It is worth noting, however, that applying a classically calculated anharmonicity correction

to the quantum harmonic vibrational properties may yield good agreement with results based on

direct state counts.31
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Figure 2: Accuracy of separable and pairwise coupled approximations to (a) the classical density
of states and (b) the integrated quantum density of states for methane.

One might assume that only certain modes (i.e., those that are similar in frequency or in other

criteria) couple, and we can test this hypothesis by lookingat the 2-mode intrinsic densities. Within

the normal coordinate representation used here, almost allof the modes couple with all of the other

modes. In particular, most of the low-frequency bends couple to the high-frequency stretches,

and it is the anharmonicity from this intermode coupling that yields a large portion of the total

anharmonicity of the full result as shown in the Supporting Information (SI). When using normal

modes, at least, this result underscores the necessity of including the coupling between all pairs of

normal modes in order to recover the full anharmonicity.

We have also tested the accuracy of the pairwise coupled state densities for cyclopropene, for

which we employed a directab initio potential at the B3LYP/6-311++G(d,p) level of theory. All

electronic structure calculations employed the Gaussian 09 package.34 Results are compared with

a calculation of the full-dimensional density of states in Fig. 3. Evaluation of the pairwise coupled

density of states is significantly less computationally demanding. While adequately converging the

full-mode density of states for cyclopropene took approximately 125,000 hours of computer time,
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the equivalent calculation of the two-mode coupled state density required only 4,000 computer

hours using the same cluster. The accuracy ofρ(2) is very good for cyclopropene and it is a signif-
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Figure 3: Accuracy of the separable (1-mode) and pairwise (2-mode) densities of states for cyclo-
propene.

icant improvement overρ(1). Due to several of the modes having large positive anharmonicities in

cyclcopropene, the harmonic approximation yields better results than the separable approximation.

To further motivate the intrinsicn-mode densities, it is useful to consider their relation to po-

tential energy surfaces. The potential energy of a moleculewith n degrees of freedom may be

expanded about a specific geometry as

VTaylor(q1, . . . ,qn) = V0 +∑
i

∂V
∂qi

qi +∑
i, j

1
2

∂ 2V
∂qi∂q j

qiq j + . . . , (6)

whereV0 is the potential energy at the reference geometry andqi are the coordinates which we take

without loss of generality to be 0 at the reference structure. The expansion given in Eq. 6 corre-

sponds to the standard multivariable generalization of theTaylor series, and the polynomial order

of the expansion defines both the maximum number of degrees offreedom that can be coupled as

well as the maximum order of the coupling. Alternatively, wecan expand the potential as

Vn−MR(q1, . . . ,qn) = V0 +∑
i

V (1)(qi)+ ∑
i< j

V (2)(qi,q j)+ . . . , (7)
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where

V (1)(qi) = V (q)−V0 |qn = 0∀n 6= i

V (2)(qi,q j) = V (q)−V (1)(qi)−V (1)(q j)−V0 |qn = 0∀n 6= i, j . (8)

The arrangement of the sum in form given by Eq. 7 and Eq. 8 is usually termed then-mode

representation (nMR), and has a been used extensively in thevibrational dynamics community.35

For convenience in the subsequent equations, we will drop the zeroth-order termV0 since this can

always be removed by an appropriate shift of the energy. Different approximations toρ involve

the truncation of either Eq. 6 or Eq. 7 at different orders. For instance, direct state counts based

on a perturbation theory expansion of the vibrational energy levels, for instance the methods based

on the Dunham expansion, often involve the truncation of Eq.6 at the quartic level. The equations

proposed here, however, truncate Eq. 7 at a specified number of modes rather than an order of

polynomial expansion and coupling to infinite order within each pair, triple, etc... is included.

We will now explicitly consider the form of the two-mode intrinsic density of states. For two

modes, the number of states with energy less than or equal toE is given by,

Wi j(E) ≡
∫ E

0
ρi j(x)dx =

2π
h2

∫
Θ[E −V ] (E −V (qi,q j))dqi dq j, (9)

whereh is Planck’s constant,Θ is the Heaviside step function, and we have already performed

the analytic integration over the momenta. For a more detailed explanation of this procedure, we

refer the reader to the details of our Monte-Carlo algorithm.31 Substituting the expression for the

pairwise coupled state densities into Eq. 9 yields,

Wi j(E) =
2π
h2

∫
Θ[E −V ] (E −V (2)(qi,q j)−V (1)(qi)−V (1)(q j))dqi dq j . (10)

Now introducing the the separable approximation for the potential we arrive at, after some manip-
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ulation,

Wi j(E) =
2π
h2

∫
Θ[E −V (1)] (E −V (1)(qi)−V (1)(q j))dqi dq j

−
2π
h2

∫
Θ[E −V (1)] V (2)(qi,q j)dqi dq j

+
2π
h2

∫
(Θ[E −V ]−Θ[E −V (1)]) (E −V2(qi,q j)−V (1)(qi)−V (1)(q j))dqi dq j .(11)

where we have usedV (1) = V (1)(qi)+V (1)(q j). The first term is the state count obtained via the

1-mode separable approximation. The second term of Eq. 11 corresponds to a correction over

the region defined byΘ[E −V (1)] due to the potential couplingV (2). When the sign ofV (2) is

negative, meaning that the sum ofV (1) terms yields too high of an energy, the number of states is

increased, whereas when the sign ofV (2) is positive the number of states is decreased. An example

of V (2) is shown in the SI for methane. The final piece of Eq. 11 corresponds to a correction

due to the expansion or contraction of the integration region because ofV (2). An example of this

correction is shown in Fig. 4 for a stretch-bend coupling (q2, q8) and a stretch-stretch coupling

(q7, q8) for methane. From the plots in Fig. 4 and the SI it is apparentthat both pieces of the

correction could be important; however, from the specific examples we have looked at in both

methane and cyclopropene, the third term of Eq. 11 has been the more important. From the

associated plot, one can also see some of the fortuitous cancellation of errors that occurs in the

harmonic approximation. Whereas the sum of the one-mode terms leads to a compression of

the integration region compared to its harmonic approximation at each specified energy, the full

potential both compresses the region along certain axes andexpands it along others.

We have introduced a mode coupling scheme based on hierarchical n-mode expansions and

have demonstrated that accurate full-dimensional anharmonic state densities may be obtained by

truncating the representation at 2nd order, i.e., by considering only a pairwise coupled represen-

tation. As shown for methane and cyclopropene, the pairwisecoupled method yields a significant

improvement in the calculated density of states over eitherthe harmonic approximation or the

one-dimensional, separable approximation. In addition, the method we have developed can be sys-
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Figure 4: Contour plots ofV (q2,q8) and V (q7,q8), in red, versusV (1)(q2) + V (1)(q8) and
V (1)(q7)+V (1)(q8), in green, and the respective harmonic approximations, in blue for CH4. Con-
tour lines are at 10 000, 20 000, 30 000, and 40 000 cm−1 respectively.

tematically improved by the inclusion of important 3- or higher-mode couplings. While the use of

normal modes uncouples them at second order for infinitesimal displacements, they may not be the

most efficient coordinates for vibrational calculations ingeneral. We and other authors have dis-

cussed alternative coordinate choices with which to perform vibrational calculations,31,36–40and

the present approach can benefit from these efficiency improvements as well. For instance, one

could attempt to minimize∆i jk(E) with respect to the coordinates. Here we have evaluated the

classical intrinsicn-mode density usingMCPSI, and also shown that it is possible to apply this

correction by using quantum mechanically calculated∆i j(E). This method offers an approach to

intermode coupling through the use of functions that are dependent on two or more modes, which

may be of use in the calculation of kinetic and thermodynamicquantities.
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Supporting Information Available

Plots of the two-mode intrinsics showing bend-bend, bend-stretch, and stretch-stretch couplings in

CH4 and a sample plot ofV (2) for one pair of modes. This material is available free of charge via

the Internet at http://pubs.acs.org
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